XAAAAAAAAAAA		$\bigcirc $	
			SET-3
Series HFG1E/		प्रश्न-पत्र कोड Q.P. Code	56/1/3
रोल नं. Roll No.		परीक्षार्थी प्रश्न-पत्र कोड को मुख-पृष्ठ पर अवश्य लिखें । Candidates must write t on the title page of the an	उत्तर-पुस्तिका के he Q.P. Code swer-book.
ँ. रस्	ायन विज्ञान	(सैद्धान्तिक)	ee Geo
	CHEMISTRY	(Theory)	
ू जि. निर्धारित समय : 3 घण्टे		अधिव	कतम अंक : 70 🔅
Time allowed : 3 hou	rs	Maximun	n Marks : 70 🛛 🔅
 कृपया प्रश्न का उत्तर कि अवश्य लिखें । इस प्रश्न-पत्र को पढ़ने पूर्वाह्न में 10.15 बजे किय पढ़ेंगे और इस अवधि के द • Please check that thi Q.P. Code given on written on the title p Please check that thi Please check that thi Please check that thi 15 minute time has l paper will be dist 	नखना शुरू करन से के लिए 15 मिनट का ा जाएगा । 10.15 बर ौरान वे उत्तर-पुस्तिका प s question paper c the right hand si age of the answer- s question paper c n the serial n e attempting it. peen allotted to rea ibuted at 10.15 a	पहल, उत्तर-पुस्तिका में प्र समय दिया गया है । प्रश्न ने से 10.30 बजे तक छात्र के तर कोई उत्तर नहीं लिखेंगे । ontains 19 printed page de of the question pap book by the candidate. ontains 35 questions. umber of the quest ad this question paper.	श्न का क्रमाक -पत्र का वितरण वल प्रश्न-पत्र को ss. er should be tion in the The question o 10.30 a.m
the students will re answer on the answer answer on the answer	ad the question r-book during this	paper only and will no period.	ot write any
56/1/3	$\overline{1}$		P.T.C

सामान्य निर्देशः

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

(i) इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।

- (ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है क, ख, ग, घ एवं ङ ।
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं ।
- (v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है ।

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं । 18×1=18

- कक्ष ताप पर अमोनियम क्लोराइड को जल में घोलने पर बना विलयन छूने पर ठंडा अनुभव होता है। निम्नलिखित में से किस परिस्थिति में लवण अधिक तीव्रता से घुलेगा ?
 - (a) ठंडे जल में चूर्णित लवण
 - (b) गर्म जल में चूर्णित लवण
 - (c) ठंडे जल में लवण के क्रिस्टल
 - (d) गर्म जल में लवण के क्रिस्टल
- 2. लैन्थेनॉयड आकुंचन निम्नलिखित में से किसकी वृद्धि के कारण होता है ?
 - (a) परमाणु संख्या
 - (b) 4f इलेक्ट्रॉनों द्वारा परिरक्षण
 - (c) प्रभावी नाभिकीय आवेश
 - (d) परमाणु त्रिज्या

56/1/3

Get More Learning Materials Here : **_**

2

General Instructions :

Read the following instructions carefully and strictly follow them :

- (i) This question paper contains **35** questions. All questions are compulsory.
- (ii) This question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A Questions no. 1 to 18 are multiple choice (MCQ) type questions, carrying 1 mark each.
- (iv) In Section B Questions no. 19 to 25 very short answer (VSA) type questions, carrying 2 marks each.
- (v) In Section C Questions no. 26 to 30 are short answer (SA) type questions, carrying 3 marks each.
- (vi) In Section D Questions no. 31 and 32 are case-based questions carrying 4 marks each.
- (vii) In Section E Questions no. 33 to 35 are long answer (LA) type questions carrying 5 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- *(ix)* Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. $18 \times 1=18$

3

CLICK HERE

P.T.O.

🕀 www.studentbro.in

- **1.** On dissolving ammonium chloride in water at room temperature, the solution feels cool to touch. Under which of the following conditions does salt dissolve faster ?
 - (a) Powdered salt in cold water
 - (b) Powdered salt in hot water
 - (c) Salt crystals in cold water
 - (d) Salt crystals in hot water
- **2.** Lanthanoid contraction is due to increase in :
 - (a) atomic number
 - (b) shielding by 4f electrons
 - (c) effective nuclear charge
 - (d) atomic radius

56/1/3

Get More Learning Materials Here :

3.	ऐल्कोह	हॉली माध्यम में NaOH और ${ m Br}_2$ के र	ताथ CH	$_{3}\mathrm{CONH}_{2}$ अभिक्रिया करके देता है :
	(a)	CH ₃ COONa	(b)	CH_3NH_2
	(c)	$\rm CH_3 CH_2 Br$	(d)	$CH_3CH_2NH_2$
4.	અમિદ્રિ	कया R − OH + HCl $\xrightarrow{\text{ZnCl}_2}$	RCl + I	$\mathrm{H}_2\mathrm{O}$ में ऐल्कोहॉल की अभिक्रियाशीलता
	का सह	ही क्रम क्या है ?		
	(a)	$1^{\circ} < 2^{\circ} < 3^{\circ}$	(b)	$1^{\circ} > 3^{\circ} > 2^{\circ}$
	(c)	$1^{\circ} > 2^{\circ} > 3^{\circ}$	(d)	$3^{\circ} > 1^{\circ} > 2^{\circ}$
5.	यौगिक	$[\mathrm{Co}(\mathrm{SO}_4)(\mathrm{NH}_3)_5] \mathrm{\ Br}$ और $[\mathrm{Co}(\mathrm{SO}_4)(\mathrm{NH}_3)_5]$	(Br) (N	$\mathrm{H}_3{}_5{]}~\mathrm{SO}_4$ निरूपित करते हैं :
	(a)	ध्रुवण समावयवता	(b)	बंधनी समावयवता
	(c)	आयनन समावयवता	(d)	उपसहसंयोजन समावयवता
6.	निम्नलि	नखित में से कौन-सा सबसे कम क्षारकी ^र	य है ?	
	(a)	$(CH_3)_2NH$	(b)	NH_3
	(c)	\sim NH ₂	(d)	$(CH_3)_3N$
7.	स्टार्च	के ऐमिलेस घटक में ग्लकोस इकाइयों व	को जोडने	के लिए सम्मिलित ग्लाइकोसाइडी बंध
•	है :		•	
	(a)	$C_1 - C_6 \alpha \dot{a}$ ध	(b)	$C_1 - C_6 \beta \dot{a}$ ध
	(c)	$C_1 - C_4 \alpha \dot{a}$ ध	(d)	$C_1 - C_4 \beta \dot{a}$ ध
8.	$\mathrm{H}_{2}(\mathrm{g}%)=\mathrm{H}_{2}(\mathrm{g})^{2$) + $\operatorname{Cl}_2(\mathbf{g}) \xrightarrow{hv} 2\operatorname{HCl}(\mathbf{g})$ के	लिए अधि	नेक्रिया कोटि है :
	(a)	2	(b)	1
	(c)	0	(d)	3
9.	निम्नरि	नखित में बेंज़ीन पर आक्रमण करने वार्ल	ो स्पीशी	न है :
		$+ \operatorname{Cl}_2 \xrightarrow{\operatorname{AlCl}_3} \qquad \qquad$]	
	(a)	Cl-	(b)	$AlCl_{4}$
	(c)	AlCl ₃	(d)	Cl ⁺
		J		
56/1/	3		4_>	
Get Mo	re Lea	rning Materials Here : 🏬 🤇	CLICK HER	🛯 🛞 www.studentbro.in

3.	CH_3C	CONH_2 on reaction with NaOH	and B	\mathbf{r}_2 in alcoholic medium gives :
	(a)	CH ₃ COONa	(b)	CH_3NH_2
	(c)	$\rm CH_3 CH_2 Br$	(d)	$CH_3CH_2NH_2$
4.	In the order	e reaction R – OH + HCl – ZnO of reactivity of alcohol ?	$\xrightarrow{Cl_2}$	RCl + H_2O , what is the correct
	(a)	$1^{\circ} < 2^{\circ} < 3^{\circ}$	(b)	$1^{\circ} > 3^{\circ} > 2^{\circ}$
	(c)	$1^{\circ} > 2^{\circ} > 3^{\circ}$	(d)	$3^{\circ} > 1^{\circ} > 2^{\circ}$
5.	The c	ompounds $[Co(SO_4) (NH_3)_5]$ Br	and	$[Co(Br) (NH_3)_5] SO_4 represent:$
	(a)	optical isomerism	(b)	linkage isomerism
	(c)	ionisation isomerism	(d)	coordination isomerism
6.	Whicl	n of the following is least basic	?	
	(a)	$(CH_3)_2NH$	(b)	NH ₃
	(c)	\sim NH ₂	(d)	$(CH_3)_3N$
7.	The g	glycosidic linkage involved in l of starch is :	inking	g the glucose units in amylase
	(a)	$C_1 - C_6 \alpha$ linkage	(b)	$C_1 - C_6 \beta$ linkage
	(c)	$C_1 - C_4 \ \alpha \ linkage$	(d)	$C_1 - C_4 \beta$ linkage
8.	The o	rder of the reaction		
		$H_{2}(g) + Cl_{2}(g) \xrightarrow{h\nu} 2HCl (g)$	g) is:	
	(a)	2	(b)	1
	(c)	0	(d)	3
9.	The s	pecies that attacks benzene in t	followi	ng is :
		$ \begin{array}{[]{c} \\ \end{array}} + \operatorname{Cl}_2 \xrightarrow{\operatorname{AlCl}_3} \end{array} \begin{array}{[]{c} \\ \end{array} \end{array} $		
	(a)	Cl	(b)	$AlCl_4$
	(c)	AlCl ₃	(d)	Cl ⁺
56/1/3	1		5	P.T.O.

Get More Learning Materials Here : 📕

CLICK HERE

🕀 www.studentbro.in

10.	लैंथेनॉ	इंड की सर्वाधिक सामान्य और स्थायी	ऑक्सीक	रण अवस्था है :
	(a)	+ 2	(b)	+ 3
	(c)	+ 4	(d)	+ 6
11.	निम्नलि	लेखित अभिक्रिया के लिए सही सेल नि	ारूपण है	:
		$\operatorname{Zn} + 2\operatorname{Ag}^{+} \longrightarrow \operatorname{Zn}^{2+} + 2\operatorname{Ag}^{+}$		
	(a)	2Ag Ag ⁺ Zn Zn ²⁺		
	(b)	$\operatorname{Ag^{+}} \operatorname{Ag} \operatorname{Zn}^{2+} \operatorname{Zn} $		
	(c)	$\operatorname{Ag} \mid \operatorname{Ag^{+}} \parallel \operatorname{Zn} \mid \operatorname{Zn}^{2+}$		
	(d)	Zn Zn ²⁺ Ag ⁺ Ag		
12.	एक स	वत: प्रवर्तित अभिक्रिया के लिए ∆G अ	गौर E [°] सेल	होंगे :
	(a)	धनात्मक, ऋणात्मक	(b)	ऋणात्मक, ऋणात्मक
	(c)	ऋणात्मक, धनात्मक	(d)	धनात्मक, धनात्मक
13.	निम्नलि	लेखित में से कौन-सा उत्प्रेरक से प्रभावि	क्त होता है	है ?
	(a)	$\Delta \mathrm{H}$	(b)	$\Delta \mathrm{G}$
	(c)	E _a	(d)	$\Delta \mathbf{S}$
14.	निम्नलि	लेखित में से कौन-सी अनपचयी शर्करा	है ?	
	(a)	सूक्रोस	(b)	माल्टोस
	(c)	ग्लूकोस	(d)	लैक्टोस

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है | इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए |

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।

6

CLICK HERE

≫

- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

56/1/3

www.studentbro.in

10. The most common and stable oxidation state of a Lanthanoid is :

(a)	+ 2	(b)	+ 3
(c)	+ 4	(d)	+ 6

11. The correct cell to represent the following reaction is :

	$\operatorname{Zn} + 2\operatorname{Ag}^{+} \longrightarrow \operatorname{Zn}^{2+} + 2\operatorname{Ag}$
(a)	2Ag Ag ⁺ Zn Zn ²⁺
(b)	$\operatorname{Ag^{+}}\mid\operatorname{Ag}\parallel\operatorname{Zn}^{2+}\mid\operatorname{Zn}$
	1 . II I 9 .

- (c) Ag | Ag⁺ || Zn | Zn²⁺
- $(d) \qquad Zn \ \big| \ Zn^{2+} \ \big| \ Ag^+ \ \big| \ Ag$

12. ΔG and E_{cell}° for a spontaneous reaction will be :

(a)	positive, negative	(b)	negative, negative	
$\langle \rangle$, • • , •	(1)	• , •	•,•

(c) negative, positive (d) positive, positive

13. Which of the following is affected by catalyst ?

(a)	ΔH	(b)	ΔG
(c)	E _a	(d)	ΔS

14. Which of the following is a non-reducing sugar ?

(a)	Sucrose	(b)	Maltose
(c)	Glucose	(d)	Lactose

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.

56/1/3

 $\overline{7}$

CLICK HERE

15. *अभिकथन (A) :* शुद्ध प्राथमिक ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का ऐमोनी-अपघटन एक उपयुक्त विधि नहीं है ।

कारण (R) : ऐल्किल हैलाइडों के ऐमोनी-अपघटन से मुख्यत: द्वितीयक ऐमीन प्राप्त होते हैं।

- 16. अभिकथन (A): अभिक्रिया H₂ + Br₂ → 2HBr में आण्विकता 2 प्रतीत होती है ।
 कारण (R): दी हुई प्राथमिक अभिक्रिया में अभिकारकों के दो अणु भाग लेते हैं ।
- 17. अभिकथन (A): निम्न प्रचक्रण चतुष्फलकीय संकुल विरले ही देखे जाते हैं ।
 कारण (R): चतुष्फलकीय संकुलों के लिए युग्मन ऊर्जा की तुलना में क्रिस्टल क्षेत्र विपाटन ऊर्जा कम होती है ।
- 18. अभिकथन (A): ऐनिलीन के ऐसीटिलन से एकल प्रतिस्थापित उत्पाद बनता है ।
 कारण (R): NHCOCH₃ समूह का सक्रियण प्रभाव ऐमीनो समूह से अधिक होता है ।

खण्ड ख

- 19. (क) एक रासायनिक समीकरण लिखिए, यह दर्शाने के लिए कि D-ग्लूकोस की विवृत संरचना में ऋजु शृंखला होती है।
 - (ख) प्रोटीन के निर्माण के लिए किस प्रकार का बंध उत्तरदायी होता है ?
- 20. (क) 25° C पर सेल अभिक्रिया के लिए $\Delta_r G^{\circ}$ परिकलित कीजिए :

 $\operatorname{Zn} | \operatorname{Zn}^{2+} || \operatorname{Cd}^{2+} | \operatorname{Cd}$

दिया गया है : $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}, \quad E_{Cd^{2+}/Cd}^{\circ} = 0.40 \text{ V}$ 1 F = 96500 C mol⁻¹

अथवा

(ख) 0.05 mol L⁻¹ NaOH विलयन के कॉलम का विद्युत प्रतिरोध 5.55 × 10³ ohm
 है । इसका व्यास 1 cm एवं लम्बाई 50 cm है । इसकी चालकता का परिकलन कीजिए ।

- 21. (क) निम्नलिखित के लिए कारण दीजिए :
 - (i) ऐल्कोहॉल की तुलना में फ़ीनॉल अधिक प्रबल अम्ल होता है।

8

(ii) ऐल्कोहॉलों के क्वथनांक ऐल्किल शृंखला में शृंखलन बढ़ने के साथ घटते हैं ।
 अथवा

Get More Learning Materials Here : 📒

2

2

2

1+1=2

15.	Assertion (A) :	Ammonolysis of alkyl halides is	not a suitable method for
		the preparation of pure primary	amines.

- Reason(R): Ammonolysis of alkyl halides yields mainly secondary amines.
- **16.** Assertion (A): The molecularity of the reaction $H_2 + Br_2 \longrightarrow 2HBr$ appears to be 2.
 - Reason(R): Two molecules of the reactants are involved in the given elementary reaction.
- 17. Assertion (A): Low spin tetrahedral complexes are rarely observed.
 Reason (R): Crystal field splitting energy is less than pairing energy for tetrahedral complexes.
- **18.** Assertion (A): Acetylation of aniline gives a monosubstituted product. *Reason* (R): Activating effect of - NHCOCH₃ group is more than that of amino group.

SECTION B

- **19.** (a) Write chemical reaction to show that open structure of D-glucose contains the straight chain.
 - (b) What type of linkage is responsible for the formation of protein ? 2

2

2

1+1=2

20. (a) Calculate $\Delta_r G^\circ$ for the cell reaction at $25^\circ C$:

 $\begin{array}{ll} {\rm Zn} ~|~ {\rm Zn}^{2+} ~|~ {\rm Cd}^{2+} ~|~ {\rm Cd} \\ {\rm Given ~that}: ~~ {\rm E}_{{\rm Zn}^{2+}/{\rm Zn}}^{\circ} = - ~0.76 ~{\rm V}, ~~ {\rm E}_{{\rm Cd}^{2+}/{\rm Cd}}^{\circ} = 0.40 ~{\rm V} \\ {\rm 1~F} = 96500 ~{\rm C~mol}^{-1} \end{array}$

OR

- (b) The electrical resistance of a column of 0.05 mol L^{-1} NaOH solution of diameter 1 cm and length 50 cm is 5.55×10^3 ohm. Calculate the conductivity.
- **21.** (a) Account for the following :
 - (i) Phenol is a stronger acid than an alcohol.
 - (ii) The boiling point of alcohols decreases with increase in branching of alkyl chain.

OR

 56/1/3
 9
 P.T.O.

 Get More Learning Materials Here :
 CLICK HERE (>)
 (****)

(ख) (i) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए :

$$CH_3CH_2OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$$

- (ii) राइमर-टीमन अभिक्रिया में सम्मिलित समीकरण लिखिए। 1+1=2
- 22. मुख्य उत्पाद लिखिए जब : $2 \times 1 = 2$
 - (क) n-ब्यूटिल क्लोराइड को ऐल्कोहॉली KOH के साथ अभिक्रियित किया जाता है।
 - (ख) 2,4,6-ट्राइनाइट्रोक्लोरोबेंज़ीन का जल-अपघटन होता है।
- 23. निम्नलिखित समीकरणों को पूर्ण कीजिए :

(क)
$$2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow$$

- (ख) $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ + 14H⁺ + 6e⁻ →
- 24. (क) निम्नलिखित कार्बनिक यौगिक का आई.यू.पी.ए.सी. नाम लिखिए : $2 \times 1 = 2$

(ख) निम्नलिखित को पूर्ण कीजिए :

$$C_6H_5NO_2 \xrightarrow{Sn / HCl} A \xrightarrow{Br_2 / H_2O} B$$

25. हेनरी नियम क्या है ? इसका एक अनुप्रयोग दीजिए ।

खण्ड ग

26. निर्मित मुख्य उत्पाद लिखिए जब :

- (क) मेथिल क्लोराइड को Nal/ऐसीटोन के साथ अभिक्रियित किया जाता है।
- (ख) 2,4,6-ट्राइनाइट्रोक्लोरोबेंज़ीन का जल-अपघटन किया जाता है।
- (ग) n-ब्यूटिल क्लोराइड को ऐल्कोहॉली KOH के साथ अभिक्रियित किया जाता है।

2

 $3 \times 1 = 3$

1+1=2

(b) (i) Write the mechanism of the following reaction :

$$\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{2} = \mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$$

(ii) Write the equation involved in Reimer-Tiemann reaction. 1+1=2

 $2 \times 1 = 2$

1+1=2

2

- **22.** Write the main product formed when :
 - (a) n-Butyl chloride is treated with alc. KOH.
 - (b) 2,4,6-Trinitrochlorobenzene is subjected to hydrolysis.

23. Complete the following equations :

- (a) $2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow$
- (b) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 6e^- \longrightarrow$
- **24.** (a) Write the IUPAC name for the following organic compounds : $2 \times 1=2$ CH₃ - N - CH₂CH₃

(b) Complete the following :

$$C_6H_5NO_2 \xrightarrow{Sn / HCl} A \xrightarrow{Br_2 / H_2O} B$$

25. What is Henry's law ? Give one application of it.

SECTION C

26. Write main product formed when : $3 \times 1 = 3$

- (a) Methyl chloride is treated with NaI/Acetone.
- (b) 2,4,6-trinitrochlorobenzene is subjected to hydrolysis.
- (c) n-Butyl chloride is treated with alcoholic KOH.

- 27. आप निम्नलिखित रूपान्तरण कैसे सम्पन्न करेंगे : (कोई तीन)
 - (क) फ़ीनॉल से पिक्रिक अम्ल
 - (ख) प्रोपेनोन से 2-मेथिलप्रोपेन-2-ऑल
 - (ग) फ़ीनॉल से ऐनिसोल
 - (घ) प्रोपीन से प्रोपेन-1-ऑल
- 28. (क) आदर्श विलयन और अनादर्श विलयन के मध्य अंतर लिखिए।
 - (ख) 846 g जल में 30 g यूरिया घोला गया है । यदि 298 K पर शुद्ध जल का वाष्प दाब
 23.8 mm Hg है, तो इस विलयन के लिए जल का वाष्प दाब परिकलित कीजिए । 3
- 29. (क) व्याख्या कीजिए क्यों :
 - (i) बेन्ज़ोइक अम्ल में कार्बोक्सिल समूह मेटा निर्देशक होता है।
 - (ii) ऐल्डिहाइडों और कीटोनों के परिष्करण के लिए सोडियम बाइसल्फाइट प्रयुक्त किया जाता है ।
 - (iii) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिलक्षणिक अभिक्रियाएँ नहीं
 देते हैं ।

अथवा

- (ख) निम्नलिखित अभिक्रियाओं के लिए रासायनिक समीकरण दीजिए : $3 \times 1 = 3$
 - (i) प्रोपेनोन को तनु Ba(OH)2 के साथ अभिक्रियित किया जाता है।
 - (ii) ऐसीटोफ़ीनोन को Zn(Hg)/सांद्र HCl के साथ अभिक्रियित किया जाता है।
 - (iii) Pd-BaSO₄ की उपस्थिति में बेंज़ॉयल क्लोराइड का हाइड्रोजनन किया जाता है।
- **30.** (क) उत्पाद का नाम लिखिए जब D-ग्लूकोस, सांद्र HNO_3 के साथ अभिक्रिया करता है।
 - (ख) ऐमीनो अम्ल उभयधर्मी व्यवहार दर्शाते हैं । क्यों ?
 - (ग) प्रोटीन की α-हेलिक्स और β-प्लीटेड संरचना के मध्य एक अंतर लिखिए | $3 \times 1=3$

CLICK HERE

≫

12

56/1/3

R www.studentbro.in

 $3 \times 1 = 3$

 $3 \times 1 = 3$

27. How do you convert the following : (Any *three*)

- (a) Phenol to picric acid
- (b) Propanone to 2-Methylpropan-2-ol
- (c) Phenol to anisole
- (d) Propene to Propan-1-ol

28. (a) Differentiate between Ideal solution and Non-ideal solution.

- (b) 30 g of urea is dissolved in 846 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm Hg.
- **29.** (a) Explain why :
 - (i) Carboxyl group in benzoic acid is meta directing.
 - (ii) Sodium bisulphite is used for the purification of aldehydes and ketones.
 - (iii) Carboxylic acids do not give characteristic reactions of carbonyl group.

OR

- (b) Give chemical equation for the following reactions : $3 \times 1=3$
 - (i) Propanone is treated with dil. $Ba(OH)_{2}$.
 - (ii) Acetophenone is treated with Zn(Hg)/Conc. HCl.
 - (iii) Benzoyl chloride is hydrogenated in presence of Pd-BaSO₄.
- **30.** (a) Write the product when D-glucose reacts with conc. HNO_3 .
 - (b) Amino acids show amphoteric behaviour. Why?
 - (c) Write one difference between α -helix and β -pleated structure of protein. $3 \times 1=3$

CLICK HERE

56/1/3

13

P.T.O.

 $3 \times 1 = 3$

 \mathcal{B}

 $3 \times 1 = 3$

Get More Learning Materials Here : 💶

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

- 31. अभिक्रिया वेग, इकाई समय में अभिकारकों की सांद्रता घटने अथवा उत्पादों की सांद्रता वृद्धि से संबंधित होता है । इसे किसी क्षण विशेष पर तात्क्षणिक वेग के रूप में और किसी दीर्घ समय अंतराल में औसत वेग से प्रदर्शित किया जा सकता है । अभिक्रिया वेग के गणितीय निरूपण को वेग नियम कहते हैं । वेग स्थिरांक एवं अभिक्रिया की कोटि का निर्धारण वेग नियम अथवा समाकलित वेग समीकरण द्वारा कर सकते हैं ।
 - (i) औसत अभिक्रिया वेग क्या होता है ?
 - (ii) दो कारक लिखिए जो अभिक्रिया की दर को प्रभावित करते हैं।
 - (iii) (1) शून्य कोटि की अभिक्रिया के लिए अभिक्रिया वेग को क्या होता है ?
 - (2) शून्य कोटि की अभिक्रिया के लिए k की इकाई क्या है ? $2 \times 1=2$

अथवा

- (iii) (1) एक अभिक्रिया $P + 2Q \longrightarrow 3$ तपाद के लिए वेग = $k[P]^{1/2} [Q]^1 \stackrel{*}{\in} 1$ अभिक्रिया की कोटि क्या है ?
 - (2) एक उदाहरण सहित छद्म प्रथम कोटि अभिक्रिया को परिभाषित कीजिए । $2 \times 1 = 2$
- 32. उपसहसंयोजन यौगिकों में धातुएँ दो प्रकार की संयोजकताएँ, प्राथमिक और द्वितीयक, प्रदर्शित करती हैं । प्राथमिक संयोजकताएँ आयननीय होती हैं तथा ऋणात्मक आवेशित आयनों द्वारा संतुष्ट होती हैं । द्वितीयक संयोजकताएँ अन-आयननीय होती हैं और एकाकी इलेक्ट्रॉन युग्म युक्त उदासीन अथवा ऋणात्मक आयनों द्वारा संतुष्ट होती हैं । प्राथमिक संयोजकताएँ संकुल की आकृति निर्धारित करती हैं । ह्वितीयक संयोजकताएँ संकुल की आकृति निर्धारित करती हैं ।
 - (i) यदि $PtCl_2 \cdot 2NH_3$, $AgNO_3$ के साथ अभिक्रिया नहीं करता है, तो इसका सूत्र क्या होगा ?

56/1/3

 $\langle 14 \rangle$

CLICK HERE

≫

1

1

1

Get More Learning Materials Here : 💻

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

31. The rate of reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. Mathematical representation of rate of reaction is given by rate law. Rate Constant and order of a reaction can be determined from rate law or its integrated rate equation.

(i)	What is average rate of reaction ?	1
(ii)	Write two factors that affect the rate of reaction.	1

- (iii) (1) What happens to rate of reaction for zero order reaction ?
 - (2) What is the unit of k for zero order reaction ? $2 \times 1=2$

OR

- (iii) (1) For a reaction $P + 2Q \longrightarrow Products$ Rate = $k[P]^{1/2} [Q]^1$. What is the order of the reaction ?
 - (2) Define pseudo first order reaction with an example. $2 \times 1=2$
- **32.** In coordination compounds, metals show two types of linkages, primary and secondary. Primary valencies are ionisable and are satisfied by negatively charged ions. Secondary valencies are non-ionisable and are satisfied by neutral or negative ions having lone pair of electrons. Primary valencies are non-directional while secondary valencies decide the shape of the complexes.
 - (i) If PtCl₂. 2NH₃ does not react with AgNO₃, what will be its formula ?

15

1

P.T.O.

🕀 www.studentbro.in

56/1/3

- [Co(en)3]³⁺ की द्वितीयक संयोजकता क्या है ? (ii) 1 आयरन(III)हैक्सासायनिडोफेरेट(II) का सूत्र लिखिए । (iii) (1) $[Co(NH_3)_5Cl] Cl_2$ का आई.यू.पी.ए.सी. नाम लिखिए । (2)2×1=2 अथवा [Ni(CN)4]²⁻ का संकरण एवं चुम्बकीय व्यवहार लिखिए । (iii) 2[परमाणु संख्या : Ni = 28] खण्ड ङ निम्नलिखित रूपान्तरणों को सम्पन्न कीजिए : (i)
 - (1) एथेनैल से ब्यूट-2-ईन-1-अल
 - (2) प्रोपेनॉइक अम्ल से 2-क्लोरोप्रोपेनॉइक अम्ल
- (ii) C_5H_{10} अणुसूत्र वाला एक ऐल्कीन ओज़ोनी-अपघटन से दो यौगिकों 'B'
और 'C' का मिश्रण देता है । यौगिक 'B' धनात्मक फेलिंग परीक्षण देता है
और I_2 तथा NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक 'C'
फेलिंग विलयन परीक्षण नहीं देता लेकिन आयोडोफॉर्म निर्मित करता है ।
यौगिक 'A', 'B' और 'C' को पहचानिए ।2+3=5

अथवा

- (ख) (i) उपयुक्त रासायनिक परीक्षण से विभेद कीजिए :
 - (1) $CH_3COCH_2CH_3$ और $CH_3CH_2CH_2CHO$
 - (2) एथेनैल और ऐथेनॉइक अम्ल
 - (ii) ऐसीटोन के ऑक्सिम की संरचना लिखिए।
 - (iii) A \mathfrak{k} D \mathfrak{m} पहचानिए | 2+1+2=5CH₃COOH $\xrightarrow{PCl_5}$ A $\xrightarrow{H_2/Pd-BaSO_4}$ B $\xrightarrow{(i) CH_3/MgBr}$ C \downarrow LiAlH₄ D \downarrow LiAlH₄ D

CLICK HERE

≫

56/1/3

(क)

33.

- (ii) What is the secondary valency of $[Co(en)_3]^{3+}$?
- (iii) (1) Write the formula of Iron(III)hexacyanidoferrate(II).
 - (2) Write the IUPAC name of $[Co(NH_3)_5Cl] Cl_2$. $2 \times 1=2$

1

OR

(iii) Write the hybridization and magnetic behaviour of $[Ni(CN)_4]^2$. 2 [Atomic number : Ni = 28]

SECTION E

- **33.** (a) (i) Carry out the following conversions :
 - (1) Ethanal to But-2-en-1-al
 - (2) Propanoic acid to 2-chloropropanoic acid
 - (ii) An alkene with molecular formula C_5H_{10} on ozonolysis gives a mixture of two compounds 'B' and 'C'. Compound 'B' gives positive Fehling test and also reacts with iodine and NaOH solution. Compound 'C' does not give Fehling solution test but forms iodoform. Identify the compounds 'A', 'B' and 'C'. 2+3=5

OR

- (b) (i) Distinguish with a suitable chemical test :
 - (1) $CH_3COCH_2CH_3$ and $CH_3CH_2CH_2CHO$
 - (2) Ethanal and Ethanoic acid
 - (ii) Write the structure of oxime of acetone.

- **34.** (क) (i) 3d श्रेणी में किस संक्रमण तत्त्व का धनात्मक $E_{M^{2+}/M}^{\circ}$ मान होता है और क्यों ?
 - (ii) लैन्थेनॉयड श्रेणी के एक सदस्य का नाम लिखिए जो +4 ऑक्सीकरण अवस्था दर्शाने के लिए भली-भाँति जाना जाता है ।
 - (ख) कारण दीजिए :
 - (i) संक्रमण धातुओं के ऑक्सोऋणायनों में उच्चतम ऑक्सीकरण अवस्था प्रदर्शित होती है ।
 - (ii) KMnO₄ विलयन को अम्लीकृत करने के लिए HCl प्रयुक्त नहीं किया जाता
 है ।
 3+2=5
- 35. (क) (i) आयनों के स्वतंत्र अभिगमन का कोलराऊश नियम लिखिए । कोलराऊश नियम के अनुसार ऐसीटिक अम्ल की सीमांत मोलर चालकता के लिए व्यंजक लिखिए ।
 - (ii) 298 K पर दी गई अभिक्रिया के लिए अधिकतम कार्य और log K_c
 परिकलित कीजिए :

Ni (s) + 2Ag⁺ (aq)
$$\rightleftharpoons$$
 Ni²⁺ (aq) + 2Ag (s)
दिया गया है : $E_{Ni^{2+}/Ni}^{\circ} = -0.25 \text{ V}, \quad E_{Ag^{+}/Ag}^{\circ} = +0.80 \text{ V}$
1 F = 96500 C mol⁻¹ 2+3=5

अथवा

 (ख) (i) फैराडे के विद्युत्-अपघटन का प्रथम नियम लिखिए। 1 मोल Cu²⁺ को Cu
 में अपचयित करने के लिए फैराडे के पदों में कितना आवेश आवश्यक होगा ?

18

(ii)298 K पर निम्नलिखित सेल का विद्युत्-वाहक बल (emf) परिकलित
कीजिए :
Mg (s) | Mg²⁺ (0·1 M) || Cu²⁺ (0·01 M) | Cu (s)
 $[E_{\hat{R}\hat{C}}^{\circ} = + 2.71 \text{ V}, 1 \text{ F} = 96500 \text{ C mol}^{-1}, \log 10 = 1]$ 2+3=5

56/1/3

Get More Learning Materials Here : 📕

CLICK HERE

🕀 www.studentbro.in

- **34.** (a) (i) In 3d series, which transition element has positive $E_{M^{2+}/M}^{\circ}$ value and why ?
 - (ii) Name a member of lanthanide series which is well-known to show +4 oxidation state.
 - (b) Give reason :
 - (i) The highest oxidation state is exhibited in oxoanions of transition metals.
 - (ii) HCl is not used to acidify $KMnO_4$ solution. 3+2=5
- **35.** (a) (i) State Kohlrausch's law of independent migration of ions. Write an expression for the limiting molar conductivity of acetic acid according to Kohlrausch's law.
 - (ii) Calculate the maximum work and log K_{c} for the given reaction at 298 K :

Ni (s) + 2Ag⁺ (aq)
$$\rightleftharpoons$$
 Ni²⁺ (aq) + 2Ag (s)
Given : $E_{Ni^{2+}/Ni}^{\circ} = -0.25 \text{ V}, \quad E_{Ag^{+}/Ag}^{\circ} = +0.80 \text{ V}$
1 F = 96500 C mol⁻¹ 2+3=5
OR

 (b) (i) State Faraday's first law of electrolysis. How much charge, in terms of Faraday, is required for the reduction of 1 mol Cu²⁺ to Cu ?

(ii) Calculate emf of the following cell at 298 K for

$$Mg(s) \mid Mg^{2+}(0.1 \text{ M}) \mid Cu^{2+}(0.01 \text{ M}) \mid Cu(s)$$

 $[E_{cell}^{\circ} = +2.71 \text{ V}, 1 \text{ F} = 96500 \text{ C mol}^{-1}, \log 10 = 1]$ 2+3=5

 56/1/3
 19

 Get More Learning Materials Here :
 CLICK HERE (>>)

	Marking Scheme Strictly Confidential (For Internal and Restricted use only)Senior Secondary School Examination, 2023 SUBJECT: CHEMISTRY (043) (56/1/3)
Gene	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

Get More Learning Materials Here : 📕

9	If a student has attempted an extra question, answer of the question deservin			
	more marks should be retained and the other answer scored out with a note			
10	"Extra Question".			
10	no marks to be deducted for the cumulative effect of an error. It should be penalized only once			
11	A full scale of marks 70 has to be used. Please do not hesitate to award full			
	marks if the answer deserves it.			
12	Every examiner has to necessarily do evaluation work for full working hours			
	i.e., 8 hours every day and evaluate 20 answer books per day in main su			
	and 25 answer books per day in other subjects (Details are given in Spot			
	in question paper.			
13	Ensure that you do not make the following common types of errors committed			
	by the Examiner in the past:-			
	 Leaving answer or part thereof unassessed in an answer book. 			
	 Giving more marks for an answer than assigned to it. 			
	 Wrong totaling of marks awarded on an answer. 			
	 Wrong transfer of marks from the inside pages of the answer book to the title page 			
	 Wrong question wise totaling on the title page 			
	 Wrong totaling of marks of the two columns on the title page. 			
	 Wrong grand total. 			
	 Marks in words and figures not tallving/not same. 			
	 Wrong transfer of marks from the answer book to online award list. 			
	• Answers marked as correct, but marks not awarded. (Ensure that the right			
	tick mark is correctly and clearly indicated. It should merely be a line.			
	Same is with the X for incorrect answer.)			
	 Half of a part of answer marked correct and the rest as wrong, but no marks awarded 			
14	While evaluating the answer books if the answer is found to be totally incorrect			
	it should be marked as cross (X) and awarded zero (0) Marks.			
15	Any un assessed portion, non-carrying over of marks to the title page, or			
	totaling error detected by the candidate shall damage the prestige of all the			
	personnel engaged in the evaluation work as also of the Board. Hence, in order			
	to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously			
16	The Examiners should acquaint themselves with the guidelines given in the			
	"Guidelines for spot Evaluation" before starting the actual evaluation.			
17	Every Examiner shall also ensure that all the answers are evaluated, marks			
10	carried over to the title page, correctly totaled and written in figures and words.			
10	on payment of the prescribed processing fee. All Examiners/Additional Hood			
	Examiners/Head Examiners are once again reminded that they must ensure			
	that evaluation is carried out strictly as per value points for each answer as			
	given in the Marking Scheme.			

XII_39_043_56/1/3_Chemistry # Page-**2**

Get More Learning Materials Here : 💻

MARKING SCHEME Senior Secondary School Examination, 2023 CHEMISTRY (Subject Code–043) [Paper Code: 56/1/3]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(b)	1
2.	(c)	1
3.	(b)	1
4.	(a)	1
5.	(c)	1
6.	(c)	1
7.	(c) / Award full mark if attempted (Printing error)	1
8.	(c) / Full mark to be awarded for any option.	1
9	(d)	1
10.	(b)	1
11.	(d)	1
12.	(c)	1
13.	(c)	1
14.	(a)	1
15.	(c)	1
16.	(a)	1
17.	(a)	1
18.	(c)	1
	SECTION-B	
19.	(a) CHO (CHOH) ₄ $\xrightarrow{\text{HI, }\Delta}$ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	1
	CH ₂ OH (<i>n</i> -Hexane)	1
20.	(a) $E_{cell}^{\circ} = 0.40 - (-0.76) = 1.16 \text{ V}$	1 1/2

XII_39_043_56/1/3_Chemistry # Page-**3**

Get More Learning Materials Here : 📕

CLICK HERE

CLICK HERE

Get More Learning Materials Here : 💶

XII_39_043_56/1/3_Chemistry # Page-4

XII_39_043_56/1/3_Chemistry # Page-5

🕀 www.studentbro.in

28.	(a)		
	Ideal Solution	Non-ideal solution	
	The solution obeys Raoult's law at all concentrations.	The solution does not obey Raoult's law.	1
	$\Delta V mixing = 0$ and $\Delta H_{mixing} = 0$	$\Delta V_{mixing} \neq 0 \text{ and } \Delta H_{mixing} \neq 0.$ (Any one)	
	(b)	(or any other correct difference)	
	$\frac{P_A^0 - P_A}{P_A^0} = \frac{\frac{W_B}{M_B}}{\frac{W_B}{M_B} + \frac{W_A}{M_A}}$	20	1⁄2
	$1 - \frac{P_A}{23 \cdot 8} = \frac{\frac{30}{60}}{\frac{846}{18}}$	or $1 - \frac{P_A}{23 \cdot 8} = \frac{\frac{30}{60}}{\frac{846}{18} + \frac{30}{60}}$	1
	$P_A = \frac{10.5}{47} \times 23.8 = 23.5 \text{ mm H}$ (Full marks may be awarded if the stumolar mass of urea is not given in the	g or $P_A = \frac{1}{47.5} \times 23.8 = 23.5$ mm Hg ident substitutes M _B for molar mass as the question).	1⁄2
29.	(a)		
	 (i) Because it is an electron-withdrawing group / deactivating group / -R effect , electrophilic substitution takes place at the m-position. (ii) Because aldehyde & ketones form addition compound with NaHSO₃ which on 		
	hydrolysis forms pure aldehyde & ket	ones. oon becomes less electrophilic	1 x 3
	OR		
	(i) $2 \text{ CH}_3 - \text{C} - \text{CH}_3 = \frac{\text{Ba}}{2 \text{ CH}_3}$	$(OH)_{2} \qquad CH_{3} - C - CH_{2} - C - CH_{3}$ $(OH)_{2} \qquad CH_{3} - C - CH_{2} - C - CH_{3}$ $(CH_{3} - CH_{3} $	1 x 3
	Conc. H		
		н, СНО	
	Pd Pd	-BaSO	
30.	(a) Saccharic acid / HOOC–(CHOH)	T- COOH	1
	Zwitter ion.	and range group / Due to the formation of	1
	(c) α -helix has intramolecular H-bond	ling and β -helix has intermolecular H-bonding.	1

CLICK HERE

》

XII_39_043_56/1/3_Chemistry # Page-**6**

Get More Learning Materials Here : 💻

	SECTION-D		
31.	(i) Change in the concentration of a reactant or product per unit time.		
	(ii) Concentration of reactants, Surface area, catalyst and temperature (any two).	1	
	(iii) (1) rate is independent of the concentration of reactant(s) /rate remains constant /	1	
	rate = k		
	(2) mol $I^{-1} s^{-1}$	1+1	
	$(2) \operatorname{mor} L = S$	1 1	
	(iii) (1) 3/2 / 15	1	
	(1) (1) 5/2 7 1.5 (2) A reaction that appears to be of higher order but follows first order kinetics	1	
	Example: Hydrolysis of an ester (or any other correct example)	1/2 1/2	
22	$(i) [D_t(N L_t), C_{t-1}]$	72,72	
52.	(i) $[\Gamma((NH_3)_2 C_{12}]$	1	
	$\begin{array}{c} (11) 6 \\ (11) \mathbf{E}_{0} \cdot [\mathbf{E}_{0}(\mathbf{CN})] \\ \end{array}$	1	
	$(11) (1) \operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$	1	
	(2) Pentamminechloridocobalt(III) chloride.	1	
	OR		
	(111) dsp ² , diamagnetic	1,1	
	SECTION E		
33.			
	(a) (i)		
	$\begin{pmatrix} 1 \\ dil N_{2}OH \end{pmatrix} = A$		
	$CH_3CHO \xrightarrow{\text{dll. NaOH}} CH_3CH_CH_2_CHO \xrightarrow{\Delta} CH_3_CH=CH_CHO$	1	
	$ $ $ $ $-H_2O$		
	OH		
	(2)		
	$CH_2 CH_2 - COOH \xrightarrow{(i)} Cl_2 / Red P CH_2 - CH - COOH$		
	(ii) H ₂ O		
	Cl	1	
	(ii)	1	
	A = CH_3 — $CH=C$ — CH_3 / 2-Methylbut-2-ene		
	CH ₃		
	$B = H_{s}C$ —CHO / Ethanal / Acataldobydo		
	C = O = C = CH	1 2	
	/ Propanone / Acetone	1 x 3	
	CH ₃		
	OR		
	(b) (i) (1) Add Iodine (I ₂), NaOH, and heat both the test tubes containing the given		
	organic compounds. Butanone gives yellow precipitate (CHI_3) while butanal will not	1	
	give the positive iodoform test.		
	(ω) And WartCO3 in both the test tube containing the given organic compounds.		
	Cor any other suitable chemical test	1	
	(ii) (iii)		
	_OH		
	N N	1	
	(iii) $A = CH_3COCI$, $B = CH_3CHO$, $C = (CH_3)_2CH(OH)$, $D = CH_3CH_2OH$	½ x 4	
	XII 39 043 56/1/3 Chemistry # Pa		

CLICK HERE

Get More Learning Materials Here :

-			
34.	(a) (i) Copper,		
	Copper, due to high $\Delta_{sub}H$ and low $\Delta_{Hyd}H$ / The sum of enthalpies of sublimation		
	and ionisation of copper is not balanced by the hydration enthalpy.		
	(ii) Cerium /Terbium		
	(b)		
	(i) Due to ability of oxygen to form multiple bonds with transition metals.		
	(ii) KMnO ₄ being an oxidising agent oxidises HCl to chlorine (Cl ₂).		
35.	(a)		
	(i) Molar conductivity of an electrolyte, at infinite dilution can be expressed as the		
	sum of the contributions from its individual ions.		
	$\wedge_{\mathbf{m}}^{\circ} \operatorname{ch_{3}cooh} = \lambda_{\mathbf{m}}^{\circ} \operatorname{ch_{3}coo^{-}} + \lambda_{\mathbf{m}}^{\circ} \operatorname{H^{+}}$		
	(ii) $\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = -\mathbf{n} \mathbf{F} \mathbf{E}_{cell}^{\circ}$		
	Maximum work = $-\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = \mathbf{n} \mathbf{F} \mathbf{E}_{cell}^{\circ}$	1⁄2	
	$-2 \times 96500 \text{ C mol}^{-1} \times (0.80 \pm 0.25) \text{ V}$		
	$= 2 \times 90300 \text{ C mor} \times (0.80 \pm 0.23) \text{ V}$	1/2	
	$= 2 \times 96500 \times 1.05 \text{ Jmol}^{-1}$		
	$= 202,650 \text{ J mol}^{-1} \text{ or } 202.65 \text{ kJ mol}^{-1}$		
	$-c$ nE_{coll}		
	$\log K^{c} = \frac{1-cen}{0.059}$		
	2 × 1.05		
	$=\frac{2\times105}{0.059}=35.6$		
0.039 OP			
	(b) (i) It states that the mass of a substance deposited /liberated at the electrodes is	1	
	(b) (f) It states that the mass of a substance deposited /hbefated at the electrodes is directly proportional to the charge/quantity of electricity passed through the		
	electrolyte		
	2F charge is required.		
	0.0591 [Mg ²⁺]		
	(ii) $E_{cell} = E_{cell}^{\circ} - \frac{0.0001}{2} \log \frac{[Mg]}{[Cu^{2+}]}$	1	
	0.0591 0.1		
	$= 2.71 \text{ V} - \frac{0.0371}{2} \log \frac{0.11}{0.01}$		
	$= 2.71 \text{ V} = \frac{0.0591}{100000000000000000000000000000000000$	1	
	-2.71 v $-\frac{1}{2}$ log 10		
	= 2.71 V - 0.0295		
	= 2.68 V. (Deduct ¹ / ₂ mark for no or incorrect unit)	1	
	* * *		

XII_39_043_56/1/3_Chemistry # Page-**8**

Get More Learning Materials Here : 💻

